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The influence of phylogenetic trees on correlations in mutation pro-

cesses is investigated. Generally, correlations decay exponentially

with the generation number. We find that two distinct regimes

of behavior exist. For mutation rates smaller than a critical rate,

the underlying tree morphology is almost irrelevant, while mutation

rates higher than this critical rate lead to strong tree-dependent cor-

relations. An identical critical behavior underlies all multiple point

correlations. This behavior generally applies to branching processes

undergoing mutation.



Goals

• Time evolution of inter-sequence correlations.

• Influence of Phylogeny (family tree) on sequence evolution.

The Mutation-Duplication Model

• Sequences: Simplest possible: alphabet size=2, length=1.

The numeric values σi = ±1 are attached to the two states.

• Random mutation process: Poisson Statistics: σ → −σ

(mutation event) with p the mutation probability.

• Binary tree phylogeny: Every parent has two children.
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Fig. 1. The mutation process on a two-generation tree. The multiplicative

variable τ (σi = τiσj, j parent of i) indicates whether a mutation occurred.



Law for Correlations

• Pair correlations 〈σiσj〉. Example (Fig. 1):

〈σ3σ4〉 = 〈σ0τ1τ3σ0τ1τ4〉 = 〈σ2
0τ

2
1 τ3τ4〉 =(∗) 〈τ3τ4〉 =(∗∗) 〈τ〉2

〈σ3σ5〉 = 〈σ3σ6〉 = 〈τ〉4 (following similar calculation)

(*) two-state symmetry: σ2 = τ 2 = 1

(**) identical, independent random variables: 〈τiτj〉 = 〈τi〉〈τj〉

• In general, let di,j be the genetic distance, the minimal num-

ber of bonds connecting the nodes i, j (d3,4 = 2, d3,5 = 4)

〈σiσj〉 = 〈τ〉di,j

• Multiple point correlations follow a similar rule,

〈σiσjσkσl〉 = 〈τ〉di,j,k,l

• di,j,k,l the generalized 4-point genetic distance, the minimal num-

ber of nodes connecting the nodes i, j, k, l:

di,j,k,l = min{di,j + dk,l, di,k + dj,l, di,l + dj,k}.

• Generally, n-point correlations = 〈τ〉dn. The n-point genetic

distance dn=minimal number of bonds connecting the n-nodes.



Average Correlations

• Average pair correlation at k generation

G2(k) = 〈〈σiσj〉〉

Average taken over all (i) realizations (ii) i, j from kth generation.

• For example, at second generation (Fig. 1): G2(2) = [〈σ3σ4〉 +

〈σ3σ5〉+〈σ3σ6〉]/3 = (〈τ〉2+2〈τ〉4)/3. In general, the geometric

series G2(k) = (〈τ〉2 + 2〈τ〉4 + · · · + 2k−1〈τ〉2k)/(2k − 1), or

G2(k) =
〈τ〉2

2〈τ〉2 − 1

(2〈τ〉2)k − 1

2k − 1
.

• Two asymptotic behaviors marked by pc =
1
2

(

1− 1√
2

)
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
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〈τ〉2k p < pc;

2−k p > pc.

• Low mutation rates: Phylogeny is marginally relevant. Ex-

ponential decay of correlations has same constant as for trivial

star phylogeny. Only overall prefactor (> 1) is enhanced.

• High mutation rates: Phylogeny generates strong correla-

tions. Exponential decay constant is enhanced. It depends on

tree morphology rather than the mutation probability.



The Star Phylogeny

• The trivial star phylogeny serves as a reference.

• All genetic distances are equal di,j = 2k.

• Factorizing (mean-field) correlations

G∗2(k) = [G∗1(k)]
2 = 〈τ〉2k

• Compare tree with star in k →∞ limit

G2(k)

G∗2(k)
→















const. p < pc;

∞ p > pc.

Fig. 2. The path connecting two nodes always contains the tree root.



Higher Order Correlations

• Average n-node correlation at kth generation

Gn(k) = 〈〈σi1σi2 · · ·σin〉〉

• Obtain from Gn(k) = Fn(k)/
(2k

n

)

using the sums

Fn(k) =
∑

1≤i1<i2<···<in≤2k

〈σi1σi2 · · ·σin〉.

• Corresponding recursion relations reflect the binary tree

Fn(k) =
n
∑

m=0
Fm(k − 1)Fn−m(k − 1)BmBn−m

• Boundary conditions Fn(0) = δn,0 + δn,1

• Tree root counted for odd order correlators, as reflected by Bn

Bn =















1 n = 2r

〈τ〉 n = 2r + 1.

• Analysis in the asymptotic (k → ∞ limit) is possible using

generating functions techniques.



Asymptotic Behavior

Low mutation rates p < pc: All correlations behave simi-

larly as limk→∞[Gn(k)]
1/nk = 〈τ〉. For the star case G∗

n(k) =

〈τ〉nk and thus, correlations are only marginally enhanced due

to phylogeny as Gn(k)/G
∗
n(k) = An > 1.

Gn(k) ' An〈τ〉nk

High mutation rates p > pc: Phylogeny generates signif-

icant correlations. Odd correlations are enslaved to even ones

G2r+1(k) = (2r + 1)〈τ〉kG2r(k). Correlations decay slower and

the decay rate depends on tree morphology only. Ratio with

trivial star phylogeny diverges Gn(k)/G
∗
n(k)→∞ for n > 1.

G2r(k) ' Cr2
−rk

Nature of transition: can be understood heuristically. Near

relatives are strongly correlated but exponentially rare. Far rel-

atives are abundant but exponentially weak. When p < pc far

relatives dominate, and when p > pc near relatives dominate.

Same critical point underlies all correlators



Generalizations

Stochastic tree morphologies: Only relevant parameter is

the average number of children 〈k〉. Critical point shifts, role of

phylogeny diminishes for larger trees

pc =
1

2
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Continuous time formulation: Mutation occurs with rate

γ, birth with rate ν. In terms of the dimensionless mutation

rate θ = γ/ν the transition occurs at θc = 1/4.

Larger alphabets: consider n-state “clock” model σ =

exp(i2πj/n) with j = 0, 1, . . . , n with the rotation mutation

σ → σ exp(i2π/n). Critical point shifts, role of phylogeny di-

minishes with increasing the number of states

θc =
1

2(1− cos 2π
n )

.

Nature of transition remains the same



Conclusions

• Correlations decay exponentially with time, genetic distance.

• Phylogeny matters only when the mutation rates is high.

• Transition is critical in nature: all correlations behave similarly.

• Results apply to a large class of mutation/duplication processes.

• Role of phylogeny decreases as alphabet size, tree size increases.
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